PEC & Sensors Laboratory

Chinese Journal of Catalysis: Novel plasmonic SrMoO4 for broad spectrum nitrogen fixation

Article:  Tunable and stable localized surface plasmon resonance in SrMoO4 for enhanced visible light driven nitrogen reduction

Authors: Q. Li, Z. H. Zhao, X. X. Bai, X. Tong, S. Yue, J. Y. Luo, X. Yu, Z. N. Wang, Z. Wang, P. P. Li, Y. P. Liang and Z. M. Wang

Abstract:

Photocatalytic nitrogen reduction for the green synthesis of ammonia at ambient conditions has been slowed by the narrow light harvesting range, low activity and high charge recombination of photocatalysts. Plasmonic semiconducting nanomaterials are becoming the promising candidates for nitrogen photofixation because of the broad absorption spectrum, rich defects and hot carriers. In the present study, plasmonic SrMoO4 is developed by regulating the concentration of oxygen vacancies that are accompanied in the reduction process from Mo6+ to Mo5+. The stable and tunable localized surface plasmon resonance (LSPR) absorption in visible and near infrared light range makes the wide bandgap SrMoO4 utilize the solar energy more efficiently. Energetic electrons from both the intrinsic band excitation and the LSPR excitation enable the reduction of dinitrogen molecules thermodynamically in ultrapure water to ammonia. This work provides a unique clue to design efficient photocatalysts for nitrogen fixation.

Cite this: Q. Li, Z. H. Zhao, X. X. Bai, X. Tong, S. Yue, J. Y. Luo, X. Yu, Z. N. Wang, Z. Wang, P. P. Li, Y. P. Liang and Z. M. Wang, Tunable and stable localized surface plasmon resonance in SrMoO4 for enhanced visible light driven nitrogen reduction, Chinese Journal of Catalysis 2021, 42, 1763-1771. 10.1016/S1872-2067(21)63799-3

DOI: 10.1016/S1872-2067(21)63799-3

More To Explore

Share This Post